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Stable Commercial Laser

140 Watt CO, Laser
Invisible infrared beam A = 10.6 um
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¢ Ultracold Atomic °Li Gas
¢ Quark-Gluon Plasma

» High T. Superconductors

s Neutron Matter
¢ Black Holes in String Theory

Strongly Interacting SLi gas
T=10"K

Duke, Science (2002)

= Similar “El]lptlc” Flow <= Quark-gluon plasmaT=102K
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Disorder—thermodynamic properties

Is a Strongly-interacting atomic °Li gas a
fluid with the minimum viscosity?
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For a universal quantum gas,
the energy E 1s determined

by the cloud size Duke, PRL (2005)

For a weakly interacting quantum gas
the entropy S can always be determined

from the cloud size (textbook problem)

Experiment

- - ) o« »
Start Sweep magnetic field  End
Universal strongly Weakly interacting

Interacting Duke, PRL (2007)
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of the rotating cloud with respect
to the laboratory axis
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